

Electrical Transport and Optical Spectroscopy Discovery Platform

CINT User Workshop Breakout Session, January 2007

Platform fabrication: Malcolm Carroll, Kent Childs and David Luck

External planning: Mark Reed (Yale) and Dimitry Basov (UCSD)

CINT scientists: Michael Lilly, Aaron Gin, Elshan Akhadov, Tom Picraux, Bill Smith, Rohit Prasenkumar, Alec Talin and Rick Averitt

Outline

- Discovery Platforms
- Electrical transport and optical spectroscopy concept
- First generation platform
- Discussion: features, additions and experiments

Discovery Platforms: Unique User Capabilities For Nanomaterials Research

Discovery Platforms = "chips" that allow Users to:

- Stimulate
- Interrogate
 - •Exploit

nanomaterials in microsystem environments

Users provide the materials

Discovery Platforms

Attributes:

- 1) Multiple in-out signals for stimulation, interrogation.
- 2) Standardized, readily available.
- 3) "Pop-In" Design for rapid utilization, exchange.
- 4) Rugged and robust.
- 5) Compatible with wide range of materials and CINT instruments.
- 6) Parallel architecture for statistics.
- Controllable environment.

New Tools: Discovery PlatformsTM

Standardized modular, micro-laboratories—designed and batch fabricated for:

- Integrating nano and micro length scales
- Studying the physical / chemical properties of nanoscale materials and devices
- Directly accessing wide range of CINT external diagnostic and characterization tools

Cantilever Array Platform

Electrical Transport & Optical Spectroscopy Platform

Microfluidic Synthesis Platform

Microsystems Development Lab

SUMMIT V™ is a standard MEMS process at Sandia that enables rapid prototyping and production quantities of reproducible MEMS parts

http://www.sandia.gov/mstc/technologies/micromachines/techinfo/technologies/summit5.html

SwIFT is a MEMS process similar to SUMMiT, but it has the added feature of nitride encapsulation

- useful for microfluidics
- can also integrate simple transistors

a complicated gear assembly made using SUMMiT V™

a microfluidic device made using SwIFT

Outline

- Discovery Platforms
- Electrical transport and optical spectroscopy concept
- First generation platform
- Discussion: features, additions and experiments

Initial Concept

Microelectronics Platform for DC Transport Courtesy of Mark Reed, Yale

FET Structure for Electrostatic Doping Courtesy of Dimitri Basov, USCD

Goals:

- reliability
- throughput
- meaningful statistics

Operational Characteristics

PLATFORM REQUIREMENTS:

- Wafer scale platform for multiple characterization runs >> statistics
- Compatibility with automated screening to eliminate outliers
- Compatibility with 4-400K operation

PLATFORM ATTRIBUTES:

- Supports DC transport, optical spectroscopy, and scanning probe measurements
- FET electrostatic doping to avoid disorder that occurs with chemical doping
- Future features could include on-chip amplifiers, or compatibility with electron microscopes

Outline

- Discovery Platforms
- Electrical transport and optical spectroscopy concept
- First generation platform
- Discussion: features, additions and experiments

First generation overview

Four quadrants

I – open for custom patterns (EBL)

II – lines and crosses

III - small die lines and crosses

IV – interdigitaged fingers

• Features:

Back gate

Light sensor

Thermometer

• Key sizes:

Minimum feature size: 0.18 μm

Overall - 2 cm x 2cm

64 Contact pads, 400 μm square

Cross section

M1 200A Ti / 500A TiN / 2000A (or 1000A) AI / 1000A TiN

M2 200A Ti / 500A TiN / 7000 A AI / 1000A TiN

Gate oxide breakdown – 50 to 100 V (estimate)

Quadrant I: User Customizable

58 gate lines2.5um lines2.5um spacing

Quadrant I images

Quadrant II: lines and crosses

$0.18~\mu m$ lines and spaces

Cross patterns

4 gate crosses in quadrants II and III

 $0.18~\mu m$

 $0.5~\mu m$

 $0.5~\mu m$

Quadrant III: Small die

0.18 um lines & spaces

2.5 um lines & spaces

2.5um lines & 25um spaces

0.18um terminated lines

Quadrant IV: Interdigitated fingers

50 um interdigitated lines & 150 um spaces

Packaging and control electronics

platform

adapter

Instrument or integration base

Outline

- Discovery Platforms
- Electrical transport and optical spectroscopy concept
- First generation platform
- Discussion: features, additions and experiments

Discovery platform development cycle

Each step will require active collaborations and input from CINT scientists, platform developers, and the CINT User Community.

Initial tests and experiments

Tests in progress:

- Diode characteristics for light and temperature sensing
- Line resistance, capacitance and leakage
- Contact properties
- Electron beam lithography region
- Surface characteristics (optics and AFM)

Example: SiGe nanowire with FIB written Pt contacts

New capabilities – nanowire platform

Alec Talin, CINT Integration Scientist

- Nanowire dispersion
- Contact deposition (nanoimprint)
- Transport
- Micro photoluminescence

Generation II

- 2D electron channel (design work has already started)
- On-chip active components consistent with low temperature operation
- Implementation of nitride membranes
- ???

